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THE SELECTION FUNCTIONAL
BY

BRENTON R. CLARKE (MURDOCH)

Abstract. The paper illustrates a solution of the problem of
choosing a root from estimating equations which have multiple roots.
This solution is applicable also to multivariate parameter estimation.
In the univariate parameter case, the consistency of the M - estimator
is illustrated in a way which shows how other estimation methods can
easily invoke the same technigue. Multivariate parameter extensions
are then indicated.

1. Introduction. The idea of a selection functional arises out of a need to
bring together notions of choosing a root from estimating equations which
have multiple roots. Important examples of this occur in different classical
estimation methods for parameters in mixtures of two normal distributions and
again in the maximum likelihood estimation of a location parameter in
a Cauchy parametric family with scale known. Numerous particular examples
of the former type are illustrated in [23], while a solution of the latter problem
is actually given in [7].

Several authors, including Cramér [9], Huzurbazaar [18], Tarone and
Gruenage [22] and Foutz [11], all examine consistency arguments for local
solutions 0F of maximum likelihood equations. They consider both existence
and uniqueness of local solutions of the equations which pertain to the efficient
solution. Here it is assumed that a parametric family # = {F: 1€ ©}, where
@ < E’, Euclidean r-space, describes the random sequence of independent,
identically distributed random variables X, ..., X, at a particular parameter
He®. Consistency implies 0,-+8 in probability or almost surely. There of
course may exist other sequences of solutions {f,} which are not consistent. On
the other hand, global arguments for consistency of a properly defined
maximum likelihood estimator are given in [24] and [17]. Similar arguments
to these are also used in minimum distance estimation in [25]. Here the
argument is the same. It is the extremum value which is the estimator. The
extremum is assumed to be both unique and to exist, whence the estimator is
well defined. Yet, asymptotic optimality properties of the estimator are more
frequently defined through the solution of the equations, as for example in the
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description of von Mises expansions defining asymptotic normality [6]. The
connection between an extremum value and a solution of the equations is
therefore illuminating, when it is known to exist. In this paper the argument
associating the extremum with “consistent” root, that is, the root that is known
to offer asymptotic optimality properties, is illustrated and further generalized
to overcome the pathological cases that appear in some likelihood and
robusiness theory [5, 26].

There may also be real numerical advantages in highlighting the link
between the two consistency arguments through the selection functional.
A simple but illustrative example is in the solution of the Cauchy location
estimating equation, where the selection functional is equivalent to the distance
from the median. That is, the root closest to the median is defined to be the
estimator. Multivariate parameter extensions of this innovation are indicated
in the summary of Section 5.

Finally, the approach given here of showing the consistency of an
estimator can prove both simple and illustrative for students of asymptotic
theory.

2. Definition of a selection functional. The idea of a selection functional is
used initially in Clarke [7] to retain properties of weak continuity and strict
Fréchet differentiability of M -estimators given as solutions of equations

21 Kp, (@) = [¥(x, )dF,(x) = 0,

where F, is the empirical distribution function that attributes atomic weight
n~' to observations X,,..., X,, assumed to be independent, identically
distributed with 2 common distribution Fye#.

Already then the range of application is broad since M - estimators include
maximum likelihood estimators, some minimum distance estimators (cf, e.g,
[197) and a whole host of robust proposals for M - estimators since the initial
foray into the area by Huber [16], and Andrews et al. [1]. The selection
functional is designed to select for all sufficiently large n the root of the
equations that is consistent from among all the roots of equations (2.1). The
functional g: ¥ x @ —E, where % is the space of distribution functions, is
defined to have the property

2.2 v neighbouriwod N of @ infp(F,, ©)—o(F,, 0) > 0.
N
Tt is assumed that g(F,, 7) is continuous in te @. If I{y, 7) is the set of all

solutions of (2.1), the functional ¢ satisfying (2.2) when used to define the
estimator §, via ‘

23 inf o(F,, 1) = o(F,, 6,)
)

eI,

is known as a selection functional.
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3. Interesting examples of selection fumctionals. For those estimators
minimizing a distance the selection functional corresponds to the distance.
- Examples are found in [8] and [4] for estimating the mixture parameters, for
example. A typical formulation of such a distance is

(3.1) o(F,, 7) = [(F,(x)—F.(x))*dK(x)

for suitable weight functions K. Minimizing (3.1) can be shown to give
equations (2.1) (cf. [2, 197). Here assumption (2.2) is equivalent to

(32) inf J(Fo0—F (0)*dK (x) > 0,

which for unsuval choices of K, including Lebesgue measure and exponential
weight functions, can be shown to be a result of identifiability of the parametric
family Fy, = Fy, <> 6, = 0,. Assumption (3.2) is found in the minimum distance
theory of Pollard [20] and Wolfowitz [25] to name but two examples. _

On the other hand, the maximum likelihood estimator is adopted into the
framework of the selection functional by setting

Q(Fﬂ» T) = “.flﬂgﬁ(x)dj?n(x)&

where f, is the density associated with distribution F_. Denoting E as
expectation, assumption (2.2) is

inf B, [ ~log f,(X)]~Ez,[~log /,(X)] > 0

sup Eg,[log f(X)] < Eg,[log f(X)].

In comparison to Wald’s [24] global consistency argument this assump-
tion is close to Lemma 1 of that paper which shows under suitable conditions
on {f.} for 7+ 0 that

Er, [log f(X)] < Er, [Jog f(X)].

When g(F,, 7) is continuous in 7 the two statements are equivalent.

The important innovation in the argument for a selection functional,
which delineates it from the typical loss functional, is that equations (2.1) may
be defined separately from the selection functional (2.2). The selection func-
tional can thus be used as a tool for solving pathological problems of classical
statistical estimation theory and also for examining more recent robustness
theory techniques. Since the latter are derivatives of the former, it should not be
surprising that the selection functional should be applicable to both areas.

The best example already in application is that illustrated in the theory of
redescending i - functions of M -estimators, for example, as illustrated in [5]
and [13]. The selection functional is

(3.3) elF,, 1) =IF, @)~

or

Though multiple roots of the equations may exist a single root is chosen to
be the estimator via a functional which is unrelated to the estimating equations.
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4. The consistency argument. Arguments for the existence of a consistent
local root of the estimating equations based on the Fisher consistency
requirement

Er,[¥(X.0]]=0 V0e@®

can be found in varying forms. Cramér [97], Huzurbazaar [18] and Chanda [3]
give variations of a proof of comsistency of a root of maximum likelihood
equations (2.1) with

WO, 0)= 170 s ().

Multivariate parameter extensions are proved in [11] and [22] for
example. The univariate parameter generalization of these results to
M -estimators is covered by the following proposition:

ProPOSITION 1. There exists a » > 0 such that a root 0F of equations (1.1)
exists and is unique in (0—x, 0+ %) for all sufficiently large n (fasl. n). For
arbitrary 0 < x* <u, Ofe(@—x*, 0+%*} fasl n

Typical proofs of Proposition 1 using the theory of uniform convergence
can be found in [5, 7, 11]. It proves convenient to adopt the probability
framework of these papers to describe almost sure convergence, namely the
event E, is said to converge for all suofficiently large n whenever

GO‘ o
m=1n=m
Using the framework of uniform convergence, global consistency of the
estimator 6, defined by (2.3) can be shown using the assumption

4.1) Ye>0 suplo(F,, 1)—o(F, o)l <e fasl n.
L=

This assumption will follow directly from assumption (4.2) in [7] when
neighbourhoods are generated by either Kolmogorov or Lévy metrics, though
(4.1) is not even as strong as this. No connection to equations (2.1) is needed in
making this assumption.

THEOREM 1. Assume OF satisfies Proposition 1. Let g satisfy (2.2) and (4.1).
Then gn is the unigue root in (0—x, O0+3) fasl n and 5,, converges almost
surely to 6. "

A proof of Theorem 1 is accompanied by Figure 1. A fictitious selection
functional is used to illustrate the argument of the proof.
Let x be defined by Proposition 1 and let

42) S = inf  o(Fy 1)—o(F, 0).

(0,8 +x)




Selection functional 153

By continuity choose 0 < »* < x so that

(4.3) sup  o(Fy, 1)—o(Fy, 0) < 6(x)/4.
te(0— %*,0+ ¥%)

Note from Proposition 1 any other root f, of equations (2.1) lies outside of
{0—x, 0+x%) fasl n while there exists a unique root 0}e(0—»*, 0+x%)
fasl n By setting ¢ = d(x)/4 in (4.1) we obtain

o(F,, 0) > o(Fy, 0)—506/4  fasl n by (4.1)
> o(Fp, 6)+360) by (42)
> sup o(Fp, 1)+30(x) by (4.3)
2e(f — 1%, 0 + x*)
> o(F,, 0%) fasl n.

Consequently, by definition (2.3), §, = 0% fa.sl n That is, 0¥ minimizes

g(F,, ) among all the roots of (2.1) fas.l n, whence 67 is almost surely

O o e e o e e

-3

i
i
]
i
-3 g-x'0 B+ag

Fig. 1. — e(Fgt) - v o - o(Fy, 1) £ 0/4

equivalent to #, and the consistency result of Proposition 1 carries over
globally to 4,.

The multivariate parameter extension of Theorem 1 is made by replacing
the univariate interval (0 — », 0+ x) by the open ball B,(x) defined on Euclidean
r-space.
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5. Some further examples. Many examples of M -estimators are construc-
ted on the basis of an optimality criterion (cf. e.g. [14]). Such criteria are often
derived from a von Mises expansion of equations (2.1). Consequently, the
selection functional can play a useful role whenever the optimal ¥ -function is
selected in order to complete the global consistency argument and also to offer
guidance in numerical solution of the equations (cf. [5]). A tentative but
attractive proposal for possible robust selection of functionals is to choose

GO oF,) -—5{ e r}czm) J{ v, r)}.ﬁ E

This is based on the following geometric argument, which assumes
uniform convergence of the curves K, (7) and 8K (7)/8c to their respective
asymptotic curves Kp,(c) and 0Ky, (t)/0t. Since for a consistent root OF,
o(F,. 0550, it is expected for a realization of X,, ..., X, that 0K, (7)/01
evaluated at 8} should at least have the same sign as ﬁKFQ(‘T)fa”E evaluated at
0k, even though 0 is unknown. Roots of equations (2.1) adjacent to 0F will
naturally have opposite signs for 0Ky, (t)/0t simply by the geometry. Also, since
in most examples the shape of the curve K, (t) is not too dissimilar o that of
Kp,(z) for 8, # 0, the main difference, if any, being a translation of |0, —0)
coordinates (¢f. symmetric location case), the sign of 0K p,, (t)/07|; = ¢, 18 the same
as that of Ky, (t)/d1],~o. Consequently, for @, adjacent to §* the signs of

f {5;\!’(%, f)}ng(x} and | {'E};l[llﬁxg «a)} dF,(x)

are opposite to each other, increasing the value of g(F,, #,). This approach was
adopted in identifying roots in the simulation studies of Clarke [5] for
example, where the Newton Raphson equation was the focus of study.
A multivariate parameter analogue is when, after solving minimizing equations
(2.1), the Jacobian is checked to identify the solution as a minima as opposed to
a maxima. It is the author’s suggestion here that using (5.1) is in many instances
a more powerful tool than this latter approach.

In classical estimation theory also, there exist examples where solutions of
equations are sometimes not easily identified as being consistent. Numerous
difficulties in solving estimating equations for mixtures of two normal
distributions are recorded in [23] for example. It is interesting that this
problem has already been tackled in practice, where several authors, including
Everitt and Hand [10], Fukunaga and Flick [12], consider the relative goodness
of fit of more than one solution to the moment estimating equations, while using
auxiliary criteria, including a ¥? goodness-of-fit statistic. Hawkins [15] reports
a case where different solutions to the equations do not fit equally well.
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